404 research outputs found

    Framework for the Integration of Service and Technology Strategies

    Get PDF
    Organised by: Cranfield UniversityAfter sales service is a highly profitable business for manufacturers of technology-driven products. Due to this fact competitors want to share in high profit margins. At the same time after sales business has to deal with an increasing range of variants of products and technologies, shorter life cycles and changing customer demands. In spite of these manifold challenges, often neither after sales departments are involved in the early product development stage nor are customer demands and technical parameters considered in the service development processes entirely. Therefore an integration of service and technology strategies is necessary. This paper presents a framework for this integration that visualises the complex interdependencies and interfaces between service as well as product and motor vehicle workshop technologies.Mori Seiki – The Machine Tool Compan

    Absence of kinetic effects in reaction-diffusion processes in scale-free networks

    Full text link
    We show that the chemical reactions of the model systems of A+A->0 and A+B->0 when performed on scale-free networks exhibit drastically different behavior as compared to the same reactions in normal spaces. The exponents characterizing the density evolution as a function of time are considerably higher than 1, implying that both reactions occur at a much faster rate. This is due to the fact that the discerning effects of the generation of a depletion zone (A+A) and the segregation of the reactants (A+B) do not occur at all as in normal spaces. Instead we observe the formation of clusters of A (A+A reaction) and of mixed A and B (A+B reaction) around the hubs of the network. Only at the limit of very sparse networks is the usual behavior recovered.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Characteristics of reaction-diffusion on scale-free networks

    Full text link
    We examine some characteristic properties of reaction-diffusion processes of the A+A->0 type on scale-free networks. Due to the inhomogeneity of the structure of the substrate, as compared to usual lattices, we focus on the characteristics of the nodes where the annihilations occur. We show that at early times the majority of these events take place on low-connectivity nodes, while as time advances the process moves towards the high-connectivity nodes, the so-called hubs. This pattern remarkably accelerates the annihilation of the particles, and it is in agreement with earlier predictions that the rates of reaction-diffusion processes on scale-free networks are much faster than the equivalent ones on lattice systems

    Healthcare in continuum for an ageing population: national self monitoring or remote offshore monitoring for Australia?

    Full text link
    Australia is a country, similar to other developed nations, confronting an ageing population with complex demographics. Ensuring continued healthcare for the ageing, while providing sufficient support for the already aged population requiring assistance, is at the forefront of the national agenda. Varied initiatives are with foci to leverage the advantages of lCTs leading to e-Health provisioning and assisted technologies. While these initiatives increasingly put budgetary constraints on local and federal governments, there is also a case for offshore resourcing of non-critical health services, to support, streamline and enhance the continuum of care, as the nation faces acute shortages of medical practitioners and nurses. However, privacy and confidentiality concerns in this context are a significant issue in Australia. In this paper, we take the position that if the National and state electronic health records system initiatives, are fully implemented, offshore resourcing can be a feasible complementary option resulting in a win-win situation of cutting costs and enabling the continuum of healthcare.<br /

    Fast-diffusion mean-field theory for k-body reactions in one dimension

    Full text link
    We derive an improved mean-field approximation for k-body annihilation reactions kA --> inert, for hard-core diffusing particles on a line, annihilating in groups of k neighbors with probability 0 < q <= 1. The hopping and annihilation processes are correlated to mimic chemical reactions. Our new mean-field theory accounts for hard-core particle properties and has a larger region of applicability than the standard chemical rate equation especially for large k values. Criteria for validity of the mean-field theory and its use in phenomenological data fits are derived. Numerical tests are reported for k=3,4,5,6.Comment: 16 pages, TeX (plain

    Chewing gum and impasse-induced self-reported stress

    Get PDF
    An insoluble anagram task (Zellner et al., 2006) was used to investigate the proposition that chewing gum reduces self-rated stress (Scholey et al., 2009). Using a between-participants design, forty participants performed an insoluble anagram task followed by a soluble anagram task. These tasks were performed with or without chewing gum. Self-rated measures were taken at baseline, post-stressor, and post-recovery task. The insoluble anagram task was found to amplify stress in terms of increases in self-rated stress and reductions in both self-rated calmness and contentedness. However, chewing gum was found not to mediate the level of stress experienced. Furthermore, chewing gum did not result in superior performance on the soluble anagram task. The present study fails to generalise the findings of Scholey et al. to an impasse induced stress that has social components. The explanation for the discrepancy with Scholey et al. is unclear; however, it is suggested that the impossibility of the insoluble anagram task may negate any secondary stress reducing benefits arising from chewing gum-induced task improvement

    Exact Results for a Three-Body Reaction-Diffusion System

    Full text link
    A system of particles hopping on a line, singly or as merged pairs, and annihilating in groups of three on encounters, is solved exactly for certain symmetrical initial conditions. The functional form of the density is nearly identical to that found in two-body annihilation, and both systems show non-mean-field, ~1/t**(1/2) instead of ~1/t, decrease of particle density for large times.Comment: 10 page

    The duality relation between Glauber dynamics and the diffusion-annihilation model as a similarity transformation

    Full text link
    In this paper we address the relationship between zero temperature Glauber dynamics and the diffusion-annihilation problem in the free fermion case. We show that the well-known duality transformation between the two problems can be formulated as a similarity transformation if one uses appropriate (toroidal) boundary conditions. This allow us to establish and clarify the precise nature of the relationship between the two models. In this way we obtain a one-to-one correspondence between observables and initial states in the two problems. A random initial state in Glauber dynamics is related to a short range correlated state in the annihilation problem. In particular the long-time behaviour of the density in this state is seen to depend on the initial conditions. Hence, we show that the presence of correlations in the initial state determine the dependence of the long time behaviour of the density on the initial conditions, even if such correlations are short-ranged. We also apply a field-theoretical method to the calculation of multi-time correlation functions in this initial state.Comment: 15 pages, Latex file, no figures. To be published in J. Phys. A. Minor changes were made to the previous version to conform with the referee's Repor

    Annihilation of Immobile Reactants on the Bethe Lattice

    Full text link
    Two-particle annihilation reaction, A+A -> inert, for immobile reactants on the Bethe lattice is solved exactly for the initially random distribution. The process reaches an absorbing state in which no nearest-neighbor reactants are left. The approach of the concentration to the limiting value is exponential. The solution reproduces the known one-dimensional result which is further extended to the reaction A+B -> inert.Comment: 12 pp, TeX (plain

    Lattice Kinetics of Diffusion-Limited Coalescence and Annihilation with Sources

    Full text link
    We study the 1D kinetics of diffusion-limited coalescence and annihilation with back reactions and different kinds of particle input. By considering the changes in occupation and parity of a given interval, we derive sets of hierarchical equations from which exact expressions for the lattice coverage and the particle concentration can be obtained. We compare the mean-field approximation and the continuum approximation to the exact solutions and we discuss their regime of validity.Comment: 24 pages and 3 eps figures, Revtex, accepted for publication in J. Phys.
    • …
    corecore